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Some Thoughts on Portable and Tunable Mobile and Small 

Loop Antennas 

Dr. Ulrich L. Rohde, N1UL, and Dr. Kai Siwiak, KE4PT 

Introduction  

Hiker hams often use vertical whip antennas in combination with a trailing dragged wire as a ground 

radial. This is described in K. Siwiak, KE4PT, “Ionospherica –How Dipoles Radiate – the Hiker’s Bent 

Dipole,” QRP Quarterly, Spring 2014, pp 27-28. But how good is that solution? This paper tries to clarify 

some things about these antennas, as well as mobile verticals and small loops. We will also present 

some definitions and measurements. 

The detailed paper on loop antennas and mathematics for loops as large as 0.3 to 0.4 wavelengths in 

circumference can be found in K. Siwiak, KE4PT, and R. Quick, W4RQ, “Small Gap-Resonated HF Loop 

Antennas” QST, Sep., 2018.  

As useful introduction to the problem of electrically short antennas is: 

https://www.microwavejournal.com/articles/32231-tuning-electrically-short-antennas-for-field-
operation 
 

Definitions 

Our definitions are based on Zinke and Brunswick, Fundamentals of RF and Microwave Techniques and 

Technologies, Springer 2021, Editors: Ulrich L. Rohde. Hans L. Hartnagel, Matthias Rudolph, Ruediger 

Quay, Chapter 6: Electromagnetic Radiation and Antennas, chapter 6. Note that we retain the Figure and 

equation numbering and notation of Zinke and Brunswick. Some of the drawing still contains some 

German language comments but the English translation is added. 

Field strength, in physics, means the amplitude of a vector-valued field (in V/m for an electric field E and 

in A/m for a magnetic field H). An electromagnetic field results in both an electric field strength and a 

magnetic field strength. As an application in radio frequency telecommunications the signal strength 

excites a receiving antenna and thereby induces a voltage at a specific frequency and polarization in 

order to provide an input signal to a radio receiver.  
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The reference level in V/m addresses the effective height of an antenna, not its physical height or 

length. So a distant transmitter radiates power, for example 1 kW, and at the place of reception 

generates field strength as defined above. There is a magnetic field and an electric field; they are 

perpendicular to each other. The whip antenna, which is short relative to a wavelength, is essentially a 

voltage probe, while a infinitesimal loop antenna, which is very small in diameter compared to the 

wavelength, is a magnetic probe. 

The electric field-strength is measured in V/m and the magnetic filed strength is in A/m. 

Gain is often referenced to isotropic radiation, which is really mathematical convenience.  
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[From https://byjus.com/physics/impedance-of-free-space/] 

The available signal, in V/m, is not easily determined as different antennas and different receivers will 

indicate different result. Calibration is needed and the antenna factor must be specified. Therefore a 

special test receiver, as seen pictured below, is needed.  

 

The Rohde & Schwarz PR 100 with the test antenna.  

That receiver includes a table listed by name of the various available antenna factors. The antenna 

shown connected to the R&S PR 100 is calibrated and covers the frequency range from 9 kHz to 20 MHz 
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An integrated amplifier if needed can be activated. Another more powerful receiver is the ESMD 

monitoring receiver, more about it below. 

The peak gain of a half-wave dipole, neglecting electrical inefficiency, is equal to the directive gain, 

which is 1.64 (2.15 dBi). The following is a basic antenna theory over-review. 

 

Introduction in to Electromagnetic Radiation and Antennas 

 

Basic concepts of radiation, some mathematical treatment  

We will consider the emission of waves in free space; we also assume that the ground, metallic 

reflectors, etc. have ideal conductivity. Also we assume initially that the diameter of the antenna wire is 

negligible thickness and that the dipole/antenna is resonant at the frequency of operation. For 

electrically short antenna, a matching circuit for the resonant condition is needed. Either a loading coil 

or a capacitive hat or a combination of both may be used. In this paper we first focus on the dipole, then 

later on the small HF loop antenna.  

The antenna forms the transition between the transmission line and propagation of waves in free space 

[literally: "between line-conducted propagation and free wave propagation"]. One might think of the 

antenna as a transducer coupling the applied RF voltage and current at the transmitter or receiver, with 

the E and H fields in space. The following sections will examine the two elementary dipoles: the electric 

(or Hertzian) dipole and the magnetic dipole realized as a very small current loop (loop antenna). 

While a professor in Karlsruhe, Heinrich Hertz (February 22, 1857 to January 1, 1894) demonstrated that 

analogous to light waves, electromagnetic waves can be refracted and reflected (1887/88) and are 

propagated like light waves. Hertz also observed the passage of cathode rays (electrons) through metal 

foil. 

1.1 Field equations and radiation pattern for the Electric or Hertzian dipole 

Two alternating point charges +q and ‒q have a separation l << /4 such that the charge current i(t) 
can be assumed to be independent of location (Figure {6.}1/1). The field around this “Hertzian dipole” is 

rotationally symmetrical, i.e. all components at any point P are independent of the azimuth angle . We 
will assume that the component in the direction of propagation is Er and the component perpendicular 
to it in the plane of the drawing is Eϑ. No E field is present perpendicular to the plane of the drawing, i.e. 

E ≡ 0. The only magnetic field component is Hφ (perpendicular to the plane of the drawing). Since Hr ≡ 0 

and H ≡ 0, this is an E wave or TM wave  
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Figure {6.}1/1. Hertzian dipole with field components E, Hφ, Er. Az is the only component of the vector 

potential.  

We will now consider the magnitude of the field components at a distance r for the given current i(t) 

and separation l of the charges, i.e. for Hφ , Eϑ, Er = f(r, ϑ). We will derive them hereafter from the 

vector potential. The vector potential A (see chapter 5) is introduced with 

B = rot A.         ({6.}1/1) 

On the other hand, according to Maxwell’s first equation (Ampère’s law), we have 

 

J is the line current density and ∂D/dt is the density of the displacement current. In other words, for 

location-independent µ we have 

 

This equation has the solution 
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Here, dV is the volume element that transports the current density J(t), r is the distance between the 

dipole and point, and c is the speed of light. Because the effect of J at the point is delayed or “retarded” 

by the time period r/c, A is known as the “retarded vector potential”. 

Therefore, we can calculate the vector potential for the entire space if we know the current distribution 

at the place of origin. For the case of the Hertzian dipole, we have 

 dV = A dz. 

Here, A is the cross-section of the conductor between the two charges and dz is its length element. The 

current density in case of purely harmonic excitation is 

 

Then, the vector potential of the dipole of length ∆l has only the component 

 

[In the above integration, we must have l << r. This allows us to move the average value of r(z) in front 

of the integral since it is independent of z.] 

According to equation ({6.}1/6), the vector potential is constant (see Figure {6.}1/1) on a spherical 

surface arranged around the Hertzian dipole with radius r. If r grows by one wavelength, the phase of Az 

rotates by 2π. All of the field components can be derived from Az. Equation ({6.1}/1) becomes 

 

Since only Az is present, it is more convenient to perform the following calculation in cylindrical 

coordinates than in spherical coordinates. 

Given that  

we obtain the following from equation ({6}.1/7): 
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Since Az is known in terms of its dependence on the sphere’s radius r, it is more convenient to write 

 

Now according to Figure {6.}1/1 we have 

 

We take the partial derivative with respect to ρ and find 

 

or 

 

We thus have 

 

According to equation ({6.1}/6), we have 

 

If r << λ, then Hφ is determined essentially only by the second term in the parentheses. This case is 
known as the close “near field”. Here, Hφ is proportional to 1/r2. In the “far field” (r >> λ), the first 

addend in the parentheses dominates. Here, Hφ only decreases proportional to 1/r. For example, we are 

still in the near field at a distance of 10m for f = 50 MHz (λ = 6m), but we are already in the far field at a 

distance of 100 m . The field strength components of the far and near fields are mutually phase-shifted 

by 90°. In the far field, the energy corresponding to Hφ
2 decreases inversely proportional to the 
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sphere’s surface, i.e. proportional to 1/r2. The same inverse-square law also applies in optics and 

acoustics in the far field. 

Using Maxwell’s first equation, we can determine the electric field components Eϑ and Er from Hφ. 

 

Outside of the conductors we have J = 0 and 

 

{"mit" --> "where"} 

In other words, we have 

 

 

Here, Z0 = √(µ0/ε0 ≈ 377 Ω is the wave impedance of free space, (see section 4.2). For the transverse 

component Eϑ of the electric field, we have the following according to equation ({6.1}/15): 

 

For Hr = 0 (E waves!), we have 

 

The first term in parentheses again belongs to the far field while the last two terms determine the near 

field. Eϑ and Hφ represent the transverse components which are relevant for energy transport. As we can 

see from equations ({6.1}/13) and ({6.}1/18), they are in phase in the far field (r >> λ) so we can write 



9 

  

Here, both r and ϑ are missing, i.e. this relationship holds at every point in the space as long as r >> λ. 

When making field strength measurements, it thus does not matter whether we measure Hφ or Eϑ. 

Despite the spherical propagation, we encounter the same relationship between the electric and 

magnetic transverse field strengths as on a line. Since Eϑ and Hφ are involved in the energy transport, the 

Poynting radiation vector (Figure {6.}1/2a) is 

 

Figure {6.}1/2a. Basic field pattern for the Hertzian dipole in the far field. 

 

Now we must still determine the radial component of the electric field strength Er. For Hϑ ≡ 0, the radial 

component is 

 

The first term in parentheses again belongs to the far field while the second term belongs to the near 

field. Er is small with respect to Eϑ in the far field except for the dipole axis and its surroundings. 

Moreover, Er is phase-shifted by 90° with respect to Eϑ and Hφ and thus does not contribute to the 
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radiation. We can see that the Hertzian dipole produces an E wave (TM wave) with a structure that 

increasingly approaches that of the plane wave (TEM wave) in the far field as the distance grows. 

Figs. {6.}1/2b and {6.}1/3 show a series of Hertzian dipole field line patterns at different time points. As 

we can see, the radial field strength Er is inevitably required so that the electric field lines either end at 

the dipole or can close in space. The snapshots in Figure {6.}1/3a-h more precisely depict the process of 

“pinching off” (or “tying off”) the field lines. 

 

Figure ({6.}1/2b). Electric field lines of the Hertzian dipole at time intervals of 1/8T and 1/4T. 
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The dependence of the transverse field strengths Eϑ and Hφ on the angle ϑ for constant distance r in the 

far field is known as the antenna’s “vertical radiation pattern” if the dipole is arranged perpendicular to 

the reference plane. In the far zone (or "far field"), we have 

 

 and 

 

 

In other words, both exhibit the same pattern. The Hertzian dipole is an omnidirectional radiator in all 

planes perpendicular to the dipole axis: Eϑ and Hφ are independent of φ; in the planes through the 

dipole axis, it exhibits slight directivity (given by sin ϑ). For ϑ = 0, we have Eϑ = 0 whereas Er is at a 

maximum. The spatial far-field pattern of the Hertzian dipole has a toroidal shape. Figure {6.}1/4 

illustrates the dependency of the radiation density on ϑ in the far field of the Hertzian dipole. 



12 

 

Figure {6.}1/3a-d. Electric field pattern of a Hertzian dipole at different time points, referred to the 

period T. a t = 25/64T; b t = 26/64T; c t = 27/64T; d t = 28/64T 
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["Zinke/Brunswig, Lehrbuch Hochfrequenztechnik" --> "Zinke/Brunswig, RF Engineering textbook"] 

Figure {6.}1/3 e-h. e t = 29/64T; f t = 30/64T; g t = 31/64T; h t = 32/64T = T/2 
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Figure {6.}1/4. Distribution of radiation density in the far field of the Hertzian dipole. Sphere zone 

designations 

1.2 The infinitesimal loop as an energized magnetic dipole1 2 

We showed in Chapter 5 that propagation processes can very often be characterized with only three 

field components, i.e. two components perpendicular to the propagation direction and one longitudinal 

component. We designate the fields as E fields (TM fields) or H fields (TE fields) depending on whether 

the electric field strength or the magnetic field strength is involved. The Hertzian dipole produces a field 

with Eϑ and Hφ = Eϑ/Z0 as the transverse components and Er as the longitudinal component, i.e. an E 

field. There exists a dual H field with the transverse components Hϑ and Eφ = HϑZ0 and the longitudinal 

component Hr. A field of this sort is actually produced by a current-carrying loop3 as shown in Figure 

6.1/5b. By way of comparison, consider Figure 6.1/5a in which our Hertzian dipole has been 

transformed from its usual representation (Figure 6.1/1) into a circular-plate capacitor with plate 

separation ∆l. (We can take this liberty because the field equations for the Hertzian dipole are valid only 

for distances r >> ∆l, i.e. the actual near field of the technical arrangement is not present [alternatives: 

"determined", “defined”, “established”].) The electrostatic stray field of the circular-plate capacitor has 

                                                            
1 The magnetic dipole is sometimes known as the “Fitzgeraldian dipoleThe Fitzgerald vector is the dual 

counterpart of the Hertz vector. G. Fitzgerald (1851-1901) extended Maxwell’s work on electromagnetic 

light theory. From 1880 on, he worked as a professor in Dublin. 

2  Literally "supplied (or fed) magnetic dipole". 

3 Translator’s note: Literally "a loop with current flowing through it". 



15 

the same structure as the stationary magnetic near field of a circular loop with flux Θ 4. Here, it does not 

matter whether this flux is produced in a single winding or in multiple windings with less current. We 

assume that the loop diameter is equal to the diameter of the circular-plate capacitor. Under this 

condition, the E lines correspond to the H lines of the loop even in the immediate proximity. The 

significant duality of the electric and magnetic dipoles is revealed by comparing the field equations that 

are obtained for the loop either based on decomposition into circularly arranged Hertzian dipoles or an 

approach along the lines of section {6.}1.1. 

  

 

Figure {6.1}1/5a,b. Near fields of dipoles. a Electric field of a circular-plate capacitor; b Magnetic field of 

a current-carrying winding. 

 

There is a correspondence between the field components for the Hertzian dipole 

 

 

                                                            
4 Translator’s note: "Durchflutung" is also sometimes translated as “magnetomotive force”. 
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and 

 

and the field components for the magnetic dipole; respecting that l<< r, that is, the loop is 

infinitesimal. 

  

with the number of windings w and area A. In the far field, there is a correspondence between 

 

 

for the Hertzian dipole  

 

for the magnetic dipole, 

 

as well as the power densities 

 

The charge separation ∆l corresponds to 2πwA/λ. 

In the loop’s far field, the field components predominate that decrease proportional to 1/r: 
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Thus, the radiation patterns of the loop and Hertzian dipole correspond to one another. 

1.3 The Hertzian dipole and infinitesimal loop antenna as receiving antennas 

We will now operate our Hertzian dipole as a receiving antenna, i.e. allow an electromagnetic wave to 

act upon it. As shown in Figure {6.}1/6a, the magnetic field strength H of this wave is perpendicular to 

the dipole axis while the propagation direction forms the angle ϑ with the dipole axis. We now measure 

the electromotive force [alternative: "EMF"] Ve at the dipole terminals. It is equal to the integral of the 

electric field strength extended over the length of the dipole: 

 

The Hertzian dipole’s radiation pattern is thus independent of whether it is operated as a transmitting or 

receiving antenna. 

The same angle dependency is exhibited by the receive voltage of a loop that has a wire length that is 

small with respect to the wavelength. The electric field vector E lies in the loop plane as shown in Figure 

{6.}1/6b; propagation occurs at the angle ϑ with respect to the system axis. The electromotive force Vm 

is equal to the derivative with respect to time of the magnetic flux Ф: 

 

Here, A is the area and w is the number of windings in the loop. Based on the far-field relationship 

 

we find that  

 

Likewise for the loop, the radiation patterns are thus identical for transmit and receive operation. This 

correspondence holds not only for the Hertzian dipole and the loop, but also for any arbitrary form since 
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we can imagine that any antenna is composed of Hertzian dipoles. This is the subject of the reciprocity 

theorem for transmitting and receiving antennas (section{ 6.}1.9). 

1.5 Radiation density, radiated power, radiation resistance 

The vector product of the electric and magnetic vectors yields the Poynting vector S = E x H. Its effective 

value TERM-1 is a measure of the power density at the observed point while simultaneously indicating 

the direction of travel of the energy. For the Hertzian dipole in the far field, we have Eϑ = Z0Hφ and thus 

TERM-1: 

  

  

For example, for Ẽmax = 1 V/m, we have Smax = 2.65 mW/m2. Figure {6.}1/4 shows how S is a function of ϑ 

for the Hertzian dipole. The diagram is rotationally symmetrical about the axis of the Hertzian dipole. 

Integrating S over the spherical surface O that encloses the dipole (surface element dO = 2πrsinϑrdϑ), 

we obtain the total power radiated by the Hertzian dipole in free space 

  

or as an adapted quantity equation 

  

The radiated power Ps is supplied by the transmitter. We apply a suitably defined antenna current Ĩ 
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and define the “radiation resistance” RS as the equivalent ohmic resistance on which the radiated power 

Ps would be emitted. In the far field, we can arrange equation ({6.}1/39) in the following form with the 

aid of equation ({6.}1/13) 

 

and thus obtain the following for the radiation resistance of the Hertzian dipole in free space: 

  

∆l is the length of the Hertzian dipole. As we would expect, both Ps and RS are independent of r. The 

radiation resistance calculated here is referred to the feed point which carries the current Ĩ. In case of 

antennas with an irregular current distribution, we must take into consideration whether the radiation 

resistance is referred to the feed point, the base point or the location of the current maximum 

[alternative: "antinode"]. The radiation resistance RS referred to the current maximum is naturally the 

smallest. It can be converted from the current maximum (current Ĩ0) to another antenna location with 

separation y (current Ĩy): 

  

Given a sinusoidal current distribution  

 

we have 

  

We will now consider one half of a Hertzian dipole over earth [alternative: "ground"] as shown in Figure 

{6.}1/9. Part of the radiation arrives at point P via the direct path and another part is reflected by the 

ground. We assume the ground has ideal conductivity such that total reflection occurs. The direct and 
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reflected radiation thus arrive at point P as if they came from the antenna and its mirror image in the 

ground with separation ∆l = 2∆h. 

The current direction in the mirror image generally follows from Figure {6.}/10. We assume that the 

current in the radiator is I = Ivev + Iheh and in the mirror image it is I' = Iv'ev + Ih'eh. Moreover, we assume 

that E = Evev + Eheh is the electric field strength before the ground reflection and E' = Ev'ev + Eh'eh is that 

after the ground reflection. The horizontal component of the field strength must disappear at the 

earth’s surface with its good conductivity: 

 Eh + Eh' = 0 . 

In other words, we must have Ih = ‒Ih'. However, the vertical component is common to both waves: 

 Ev = Ev' 

In other words, we also have 

 Iv = Iv' 

In order to calculate the radiated power Ps' and the radiation resistance RS' of our one half of the dipole 

with respect to ground, we now only need to integrate over the upper half sphere, i.e. only within the 

limits ϑ = 0 to ϑ = π/2. We thus obtain 

  

and 

  

The radiation pattern is a half torus [alternative: "toroid"]. Given that Ps' = Ps/2, we obtain the field 

strength over level ground without losses from equation ({6.}/40): 
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Figure {6.}1/9. Hertzian dipole over a conductive plane 

Figure {6.}1/10. Determination of the current direction in the mirror image S' of conductor S 

In the transmitting case, the radiated power Ps is less than the electric power Ps0 fed to the antenna. The 

difference Pv = Ps0 ‒ Ps represents the thermal dissipation loss in the antenna. The antenna efficiency in 

the transmitting case is 

  

Analogously, in the receiving case the power Pe absorbed by the antenna from the radiation field is 

greater than the power Pe0 that can be transferred by the antenna to the load in the case of power 

matching [alternative: "impedance matching"]. We have Pv = Pe ‒ Pe0 and 

  

The current distribution on the antenna in the transmitting case differs from the receiving case because 

the near fields differ. 

The “antenna gain” G is defined as the product of the directivity and the antenna efficiency: 
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 G = Dη. 

The receive antenna is assumed to be matched to the load impedance. Any mismatches are taken into 

account in the “practical antenna gain of a receive antenna” Gp. If an optimally oriented and lossless 

Hertzian dipole or half-wave dipole is used as the reference radiator, we obtain GHz = G/1.5 and GD = 

G/1.64, respectively. The gain is typically specified in dB: 

 

In actual practice, the gain of an antenna is determined by comparing it with a λ/2 dipole or based on 

the transmission efficiency of a path. In principle, it can be determined computationally by integrating 

the radiation pattern; however, considerable errors can arise in the case of antennas with high gain if 

the side lobes5 cannot be taken into account down to very small values. 

For antennas with linear dimensions on the order of magnitude of the wavelength or greater, we use 

the “effective area” A to characterize the directivity properties. For receiving antennas, A is also known 

as the “absorption area”. In the receiving case, 

  

is an area6 perpendicular to the propagation direction through which the maximum radiation receive 

power of the antenna Pe,max would pass if exposed to an undisturbed plane wave with radiation density 

S. If the reciprocity theorem holds, the effective area in the transmitting case is equal to the absorption 

area in the receiving case. 

If we connect an assumed lossless Hertzian dipole to a receiver with input resistance Re, then the power 

absorbed from the field is 

  

and for Re = RS (power matching) we have 

  

                                                            
5 Translator’s note: Literally "auxiliary maxima". 

6 Translator’s note: Would "surface" be more logical? 
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For the very short dipole (see section 6.2), we have  

  

such that 

  

In conjunction with equation (6.1/38), the effective antenna area of the Hertzian dipole is thus 

  

The ratio of the effective area A to the aperture area Ag [alternative: "physical aperture"] of an antenna 

  

is known as the “aperture efficiency”. Ag usually represents the geometrical area of the radiant opening 

of an aperture antenna (see section 6.4). Assume we have two antennas 1 and 2 with mutual separation 

r. In the transmitting case, we assume power Ps0 is supplied to the antenna, and in the receiving case the 

antenna delivers power Pet to a load from the transmit field in case of optimal orientation towards the 

transmitting antenna. Both antennas are assumed to be lossless. Assume the transmitting antenna has 

directivity Ds and the receiving antenna has effective area AE. Moreover, we assume the propagation 

medium between the two antennas is lossless and isotropic and exhibits transmission symmetry. For 

free wave propagation and under far-field conditions, we then have the following for the transmission 

direction from 1 to 2: 

  

If we swap the roles of the transmitting and receiving antennas, i.e. reverse the transmission direction, 

the following must hold: 
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Setting TERM-1 equal to TERM-2, due to the assumed transmission symmetry TERM-3 must then also 

equal TERM-4 such that 

TERM-1: TERM-2:  TERM-3: TERM-4:  

 

  

Now let us assume that antenna (1) is a monopole and antenna (2) is a Hertzian dipole. From equation 

({6.}/67d) in conjunction with equation ({6.}/67b), it then follows for the effective area AK of the 

imaginary monopole that 

  

Now that we know the effective area of the monopole, we can obtain the important relationship for any 

arbitrary antenna between its effective area and its directivity: 

  

Taking into account the antenna losses, the effective area A is replaced by the effective area7 AW = ηA:  

 

                                                            
7 Translator’s note: The German text literally says "effective area" for AW. 
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We thus obtain the fundamental equation for power transmission on a radio link which is known as the 

Friis transmission equation: 

  

The expression 

  

is known as the “path attenuation”. We can rearrange it according to equation (6.1/68) to obtain 

  

Here,  

  

is the “fundamental transmission attenuation”8 of the radio link. a and a0 are specified in dB. 

In practical usage, we often split the fundamental transmission attenuation into individual summands 

and directly take the logarithm for fixed numerical values that arise. For example, we might obtain 

  

On the other hand, the attenuation of a normal coaxial cable as shown in Figure {6.}2.1/5 can be 

expressed with sufficiency accuracy in conjunction with equation ({6.}2.1/22) using the relationship 

  

                                                            
8 Translator’s note: One textbook I consulted called this "path loss". 
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By way of illustration, the two attenuation laws expressed in equations ({6.}.1/71) and ({6.}.1/72) are 

plotted in Figure {6.}1/14 for an operating frequency f = 100 MHz. Among other things, diagrams of this 

sort are a useful tool when deciding between a cable link and a radio link. Of course, we can easily 

reduce the attenuation of a radio link by using transmitting and receiving antennas with suitable gain. If 

we say that Gg is the geometric mean of the two gain values, we obtain the attenuation of the radio link 

in Figure {6}.1/14 by subtracting the value 20log Gg dB from a0. 

 

 

Fig {6.}1/14. Fundamental transmission attenuation a0 of a radio link and attenuation acoax of a normal 

coaxial cable as a function of distance R. Operating frequency f = 100 MHz 

 ["Koaxialkabel" --> "Coaxial cable", "Funkstrecke" --> "Radio link"] 

  

6.2.2.3 Effective height of electrically short antennas.  

The open-circuit voltage V0 of an antenna is proportional to the antenna field strength E where the 

antenna is located: 

  

The proportionality factor heff has the dimension of length and is known as the “effective height”. If the 

current in the antenna is location-independent (Hertzian dipole), then heff corresponds to the antenna’s 

geometrical length l. Otherwise, the effective height is less due to the non-uniform current distribution. 

In this general case, we obtain heff by converting the current area into a rectangle with the same area 
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having the maximum current I0 as its base as shown in Figure {6.}.2/4. Its height is then equal to heff. 

Computationally, we have 

  

The definition of the effective height is closely related to that of the effective area A (see section 6.1.7): 

 

 

6.2.3 λ/4 and λ/2 antennas over ground 

Now that we have examined the properties of electrically short antennas where l ≤ λ/8, we will turn our 

attention to longer antennas. Like for the transmission line, we will first consider the case in which l = 

λ/4. For the vertical radiation pattern of the λ/4 antenna over ground, we obtain the following from 

equation ({6.}.2/4): 

  

We can determine the radiated power and the radiation resistance of the λ/4 antenna over ground 

based on the power radiated in the half sphere: 

  

Here, C = 0.5772 is Euler’s constant and Ci(x) is the cosine integral: 
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We will now perform the analogous calculations for the λ/2 antenna. We can obtain its vertical pattern 

from equation ({6.}.2/4): 

  

We obtain the radiation resistance using the same approach as above: 

  

Note that this radiation resistance is referred to the current maximum while the feed point (base) is 

located at the voltage maximum. The base resistance RF differs similarly from RS like the input and 

termination impedance of a λ/4 line: 

  

Za = √LA/CA is the line characteristic impedance of the antenna with respect to ground: 

  

2l/d is the antenna’s slenderness ratio (d = diameter of the antenna conductor). 

In our discussion so far, we assumed a sinusoidal current distribution on the antenna. This is acceptable 

only for slender antennas for which l/d is large. In reality, the current distribution is not perfectly 

sinusoidal because the antenna behaves like a highly attenuated line. The attenuation [alternative: 
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"loss"] is primarily a consequence of the radiated power and can be taken into account by assuming that 

the radiation resistance is distributed over the entire antenna length. See for further information. 

Figure {6.}.2/7 shows the radiation resistance of a vertical antenna over ground as a function of l/λ. ‒ 

Since they are thin with respect to their length, all of the antennas discussed hitherto are narrowband. 

As shown in Figure {6.}.2/8, the plot of the resistance of an antenna of this sort between the points of 

current resonance (l ≈ λ/4 and 3/4λ) and voltage resonance (l ≈ λ/2) has a very wide opening. The 

equivalent circuit of the antenna at the voltage resonance point is a trap circuit with the input resistance 

  

Here, Za is the antenna’s characteristic impedance and RS is its radiation resistance. The circle becomes 

tighter as we decrease Za
2/RS. If we increase the ratio d/l (curve B), then Za decreases while RS remains 

practically unchanged. However, the antenna attenuation increases along with the bandwidth. For 

broadband antennas, Za
2/RS should be as close as possible to 60 Ω. Antennas of this sort operate in a 

frequency range of 3:1 or more; they are implemented in the form of cylinders, cones, rotational 

ellipsoids (see Figure {6.}2/9a) and cup antennas (see Figure {6.}2/9b). 

Since the reactance of a λ/2 dipole corresponds to that of a parallel resonant circuit, we can compensate 

the frequency response of the input impedance in a narrow frequency range by connecting a series 

resonant circuit to the input (e.g. an open λ/4 line) and thus compress the response (curve C in Figure 

{6.}2/8). 

Treating the antennas like lines, we ascertain that the quantities per unit length L' and C' are location-

dependent. This is because thick antennas exhibit voltage resonance at lengths less than λ/2. For details 

on the resulting length of thick λ/2 dipoles. 

 

Figure {6.}2/7. Plot of the radiation resistance of a thin antenna over ground 
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Figure 2{6.}/8. Plot of the input resistance of antennas with various slenderness ratios over ground 

["A = dünne Antenne …" --> "A = Thin antenna …", "B = dicke Antenne" --> "B = Thick antenna", "C = 

dicke Antenne kompensiert" --> "C = Thick antenna compensated", "kapazitiver / induktiver 

Blindwiderstand" --> "Capacitive / Inductive reactance", "Wirkwiderstand" --> "Effective resistance", 

"…-Resonanz" --> "… resonance"] 
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Figure {6.}2/9a,b. Curves for broadband antennas. a Ellipsoidal antenna; b Cup antenna 

["Zylinder" --> "Cylinder", "Kugel" --> "Sphere", "Konus" --> "Cone", "Strahler offen" --> "Antenna open", 

"geschlossen" --> "Closed", "geschlossen u. verrundet" --> "Closed & rounded"]  
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2.6 Loop Antennas; Circular Antennas 

Loop antennas are realized in a square or round shape with one or more windings. The infinitesimal loop 

equation field components are valid for a loop dimension very much smaller than a wavelength and very 

much smaller than the distance to the field point, that is, the loop is infinitesimally small.  

According to equation ({6.}1/28), the receive voltage for a loop antenna is 

 

If the loop circuit is tuned using a variable capacitor, then the terminal voltage in case of resonance is 

 

where R (the effective series resistance) essentially contains the loop resistance at the operating 

frequency. Since according to section 6.2.2.3 the induced electromotive force is Vm = heff E, we have the 

following for the loop:  

 

The effective height is extremely small; for a loop with an area of 1 m2 and 10 windings, it is only 12 cm 

for λ = 500 m. Nevertheless, the loop antenna provides usable terminal voltages because the factor 

ωL/R in equation ({6.}2/31) has values of 50 to 100. 

The number of windings w cannot be arbitrarily large since the loop’s total wire length must be less than 

one sixth of the shortest receive wavelength λmin. For a circular loop with diameter D, at best we obtain 

  

We thus have 

  

or for λ = λmin 
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For a large effective height, we must increase the diameter at the expense of the number of windings. If 

the dimensions of the loop are on the order of the wavelength, more complicated radiation patterns are 

obtained compared to the loops discussed above. 

Loops with dimensions D << λ are used for direction-finding. The main disruption that occurs is the 

“antenna effect” associated with the loop since overall the loop’s metallic material forms a short open 

antenna with respect to the wavelength. The voltage for this antenna leads the loop’s direction-

dependent induced voltage by 90° and thus “clouds” the nulls (Figure {6.}2/17). This antenna effect can 

be reduced by using a shielded loop or one that is balanced with respect to ground. However, the 

disruptive loop voltage is typically compensated with a voltage of equal magnitude from an auxiliary 

antenna (“clarification”)9. 

One significant disadvantage of the loop direction-finder is its susceptibility to the “night effect”. In 

other words, if the wave arrives after reflection on the ionosphere at an elevation angle ψ and with a 

polarization plane rotated by the angle γ, additional voltages will be induced by the horizontal field 

component in the loop’s horizontal conductor sections. For an azimuth angle φ, the total voltage is then 

 

Depending on the magnitude of ψ and γ, arbitrary patterns will arise resulting in direction-finding errors. 

The pattern’s two minima are offset by 180°, thereby causing ambiguity in direction-finding. In order to 

disambiguate the direction, the loop pattern is thus overlaid with an omnidirectional pattern to obtain a 

cardioid with a broad null (Figure {6.}2/18). Figure {6.}2/19 shows a circuit diagram for a direction-

finding receiver (Telefunken) in which a single auxiliary antenna can be selected for clarification or 

disambiguation. 

Instead of rotating the loop during direction-finding, two loops fixed at an angle of 90° can also be used. 

They feed two coils which are spatially offset by 90° in whose field a “search coil” is arranged in a 

rotatable manner. The pattern for this so-called “goniometer direction-finder” is also a double-circle 

pattern. 

Although the loop characteristic in the plane of the loop corresponds to an omnidirectional pattern, the 

simple loop is not suitable for use as an omnidirectional transmitting antenna. Since a good 

omnidirectional pattern requires highly uniform and in-phase linear current density, a loop of this sort 

would have to be small with respect to wavelength. However, the radiation resistance is then too low. 

This difficulty can be circumvented by increasing the number of feed points (“circular antennas”). As 

examples of such antennas, Figure {6.}/20a shows a dipole square and Figure {6.}2/20b the “Alford 

loop”. Due to the irregular current distribution, the patterns are not perfectly circular. In terms of their 

operation, circular antennas can be likened to arrangements with in-phase excitation in a circular 

                                                            
9 Translator’s note: Literally "unclouding". 
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configuration in a plane. Figure {6.}2/21 has two examples. Circular antennas have roughly the same 

gain as a λ/2 dipole. In order to increase the gain in the horizontal plane, several of these antennas can 

be arranged on top of one another. If very high gain is required, omnidirectional radiators made of unit 

fields can be used as described in section 6.2.11. 

 

  

Figure 2/17. Distorted characteristic for a loop due to the antenna effect. 

 

Here is an overview of the effective height of different antennas: 

 

The small loop radiation resistance for the very small loop (second to last entry in the Table) can also be 

written more conveniently in terms of C, the loop circumference in wavelengths, 

4197.3RADR C   

where we consider an N = 1 turn loop. The equation assumes a constant current around the loop. A 

more accurate expression for the current (valid for C, < 0.4) in the gap-fed loop is, 
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 2( ) 1 2 cos( )I C    

where  is the angle around the loop circumference, and the feed gap is at  = 0. Furthermore we can 

predict the far field null depth using this two term Fourier expansion for the current, and also obtain the 

wave impedance at the center of the loop. It is easy to show that for this current approximation the 

exact expression for the null depth is  

20log(2 )dBN C   

and the exact wave impedance at the loop center is, 

0
center

W
center

EZ j C
H     

where 0 = 376.73 , the free space intrinsic impedance. Thus rational criteria can be chosen for 

deciding when a small loop can qualify as a “magnetic field probe” (see K. Siwiak, KE4PT, “Small HF Loop 

Antennas are not Magnetic Loops,” Mar. 2020, QEX (Technical Notes), p. 24). If, for example, we require 

that the magnetic field probe have a far field null depth of at least 20 dB, than C must be less than 0.05, 

which will result in a near-field wave impedance of 5% of the free space intrinsic impedance, and a 

maximum current deviation of 0.5% from a constant value.  

 

Practical Antennas  

The dipole is a very useful antenna, as the current radiates perpendicularly to the wire, some energy 

gets radiated in the air useful for NVIS operation (near vertical incident skywave). NVIS operation can 

occur when the dipole antenna is close to the ground and horizontally polarized), and certain 

ionospheric conditions are met. The image below shows a pair of horizontal dipoles That have built-in 

tuners.  
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That is, each side has two dipole which puts the antenna in the category of two thick dipoles or fan 

dipoles. In the background for DX operation is the StepperIR antenna and the vertical antenna is 

“hidden” in the flagpole. 

Below is the theoretical impedance curve of a dipole in free space. As the antenna wire is fairly thick, the 

resonant impedance is at maximum 2000  reactive and resistive. In practice the wire is more like 2 mm 

or 0.1 inch, which results in much higher impedances, up to 20,000 . 

 

[Source: ARRL Antenna Book.] 

As we now move to the vertical antenna, the following picture below shows a vertical 23 feet tall 

antenna and next to it a combination active receiving antenna (actually two antennas in one housing ) 

from 9 kHz to about 600 MHz .The R&S®HE055 active omnidirectional receiving antenna has an 

extremely wide frequency range from 1.5 MHz to 600 MHz. 
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This receive only antenna has a protection circuit so when transmitting it does not get destroyed. 

 

 

Vertical rod or whip antennas have their place, as seen above, this vertical is driven by an antenna tuner, 

it works very well from 7 MHz to 50 MHz. For amateur bands 1.8 to 4 MHz it’s a bit short, but given the 

environmental noise it works sufficiently well in receive. In transmit the efficiency is about 2.5 %. This 

antenna will also be used to compare with the small HF loop antenna operating above 7 MHz.  
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The picture above shows the frequency occupancy of the 9.68 MHz broadcast band (±500 kHz).The 

evening noise level in a 2.4 kHz bandwidth is around 10 dBV 

A shorter VHF/UHF antenna version while using a Manpack radios is convenient but lossy as the housing 

of the radio is too small compared to a wavelength. That applies also to all hand-held radios. 
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At home the Manpack on the balcony is fun . 

 

And on the sailboat it is easily placed. 
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Some Real Life Tests 

Let us remember that the receiver with an antenna that collects voltage needs to translate the field 

strength into a signal (typically into a 50  termination). The field strength in V/m needs to be multiplied 

with the effective antenna height. The source impedance is 377 , as we learned .This is practically an 

open circuit voltage, which collapses in value at 50  termination significantly dependent on the 

antenna length. In the case of the active antenna the 1 m tall antenna rod is terminated into an FET with 

much higher input impedance, several 1000 , 

This system has a power gain of about 8.7 dB. 

From a practical point the absolute input voltages is less relevant. What is important is the signal/noise 

ratio. The 1 m tall active antenna at 7 MHz is definitely to short, and is not resonant. A quarter wave 

long antennas would be 10.4 m long and the 1 m vertical collects only 10% of the available signal but 

also only a tenth of the environmental noise. Most CCIR ambient noise publications are outdated 

because recent modern RF noise sources like air conditions, refrigerators and other appliances that 

generate a lot of electric noise. The wideband measurement shown above clearly indicate this. 

 

Most use resonant dipoles, so the number in dBV/m is useless, for 40 m one must multiply this number 

by 10 or add 10 dB to the power reading. This now has also to be related to the receiver bandwidth. 

Away from the house there are still enough high tension wires another electrical noisemakers that 

things don’t change too much. 

It turned out that the ham station normally do not transmit long enough for good measurements so we 

went to the 7.335 MHz broadcast frequency where we found Radio Cuba with fairly constant signal, and 

little fading . Other relevant tests were done at slightly below 10 MHz. 
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The active antenna next to the chimney is connected to an R&S monitoring receiver, type ESMD, 

calibrated in dBV and an input impedance of 50 . The noise level was as expected to be about 10 

dBV/2.4 kHz bandwidth. For the broadcast station at 7.335 the reading was 50 dBV=300 V (into 50 

), the 9.58 MHz station was 71.7 dBV. If we use the definition of S 9 =50 uV= 34dBV, then the signal 

absolute is 60 dBV=1mV x 3.9 ~ 4 mV. 71.7 dBV -34dBV ~ 38 dB above S 9. Most modern receiver 

can handle this easily. 

 

For most of the tests, the Rohde & Schwarz monitoring receiver were used, see picture above. 

The R&S®ESMD features a wide frequency range (8 kHz to 40 GHz), outstanding receive characteristics, 

80 MHz real-time bandwidth (base unit: 20 MHz) and a wealth of functions. Thanks to its sophisticated 

reselection stages, the receiver can be directly connected to a wideband monitoring antenna. This is an 

operating scenario that requires high large-signal immunity and high sensitivity, particularly in the 

presence of many strong signals. 

The marine whip antenna showed 71.7 dBV ~ 4 mV in to 50 .  

Important: This is a non-resonant but electrically matched antenna so the familiar current distribution 

does not apply! 

The 1 m rod (Definition V/m) as a reference active antenna to the ESMD test receiver indicates a 

treading of 38.5 dBV.  

The on screen dynamic range of the receiver covers -40 dBV to 80 dBV. This range can be shifted, as 

an example from -20 dBV to 100 dBV (100 mV). 
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Usinng the 1m tall active antenna there are quit a number of strong signals. Using the radio amateur 

definition of S9 =50uV=14dBuV this signal with 38 dBuV is very strong for such s short antenna. 

 

Important information: The free space impedance is 377  and the termination (receiver input) is 50  

so the down transformation is (377 +50)/50= 427/50= 8.54 or in dB 20log(8.54) =18.6 dB. The active 

antenna impedance transformation compensates this so the electric field is roughly 40 dBV/m=100 

V/m 

In comparison the 8 m non resonant antenna supplied 4 mV/50 . The unmatched 1 m whip antenna 

would reduce EMF by practically 18.6 dB or reduce the voltage to 400 V/50 .  

Sanity check: The efficiency of an electrically short antenna follows the formula 

 

So the ratio is ~ 800 x (1/30)2 / 800 x (8/30)2 = (1/30)2/(8/30)2= 1/64 = 10log (64) or -18 dB; QED! 

The Japanese company Diamond has recently introduced an improved set of mobile antennas (HF##CL), 

see photograph below. 
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They are mechanically very stable and seem to have a high Q. 

 

 

Relative to an SWR of 2.6 dB, 3dB bandwidth the loaded Q is 6.975 MHz/110 kHz = 63.  

This can be derived from the measurement seen below. 
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This measurement is actually tricky as the R&S network analyzer model FSH4 needs to have a proper 

counterpoise or set of radials. A somewhat simpler test is to check if the resonant frequency varies if the 

analyzer is touched. In this case two resonant cables where used like a set of radials. 

The measurements are actually quite accurate and at resonant frequency show the expected deviation 

in frequency out of the box and an SWR of about 1.7. This is to be expected for this type of antenna and 

as most radio transmitters reduce power above an SWR of 1.5 what needs to be correctly called a line 

flattener is needed.  

The pictures below shows part of the setup. The measurement was taken at night were we have strong 

signals in the 40 m Band. We did not have a mobile antenna for 10 MHz 

 

 

The peak signal was a French language station at 7.375 MHz peaking 48.5 dBV while the same station 

at the 8 m marine whip antenna was 75 dBV, see below 
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The whip antenna does not have the luxury of an active amplifier but an impedance transformation  

Z0= SQRT (L/C)= SQRT (40 H/14 pF)=1700 , R(Resonance) = 1700 x Q = 1700x63 = 106 k. The 

antenna will be extremely sensitive to detuning by any close-by objects. 

Again, for an electrically short element: 

 

RS ~ 800 (2.5/40)2 = 4 . For the SWR= 1.7 or 50x1.7 = 85,the loss is 85/4 = 21.2 or 26 dB. The measured 

difference was 25 dB relative to the 8 m whip . The error of 1.5 dB can be explained by fading during the 

measurement. 
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Then the Manpack, using the build in tuner was matched with a mobile antenna. This resulted in the 

same 1 dBV noise level. A short wave receiver typically has a noise figure of 10 dB without a pre-amp 

or 10 dB S/N at 0.3 V, or -10 dBV. At this 1 dBV level a 10 dBV signal is needed. And yes, 28 MHz or 

even 50 MHz is much quieter, 

One more important point; we all look at the absolute input voltage, I prefer dBV at 2400 Hz IF 

bandwidth over dBm and unless an SDR with accurate S meter is used, we really don’t know what is 

going on. Don’t we love receivers that state S-0 (by correct definition should be 65 nV) at 2 V already? 

And at Q 5? 
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Considering Small HF Loop Antenna Performance 

 

The small HF loop, an AlexLOOP, pictured above has efficiency shown in the figure below. 

 

Small HF Loop efficiency. [Source: K. Siwiak, KE4PT, and R. Quick, W4RQ, “Small Gap-Resonated HF Loop 

Antennas” QST, Sep., 2018.] 
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Kai Siwiak, KE4PT, shown using a small HF loop in a portable station at a public park. 

 

  



49 

The Mobile Station 

As the mobile station used is the R&S®MR300xH/U Advanced Multiband Tactical Radios, as they cover 

1.5 MHz to 512 MHz and operate from CW to FM in all needed modulations. In addition, being an SDR, 

the input level indicator was optimized to be in dBV from internal noise (CW =-30 dBV, SSB/2.4 kHz 

= -19d BV, with +110 dBV max) to an extremely loud signal, S-9 = 35 dBV, or 84 dB above S-9. 

The absolute accuracy is ±1 dB. Here is a view of the front panel. 

 

 

The yellow wire is a “counterpoise” of 5 m length. The displays shows 25 dBV; C14 refers to the 

channel 14, which happens to be in the 20 m band , tunable in 1 Hz steps, and +J3E refers to upper side 

band . 
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Setting of the PR100 receiver  

 

When the loop antenna is used, the wide band noise is multiplied with its narrow band width 

and we see the noise peak, resonant condition  
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Tuning the loop antenna to the 30 m broadcast range the wanted signal at 52 dBuV shows the 

peak while the high Q suppresses the adjacent signals. 

 

 

 

 



52 

This picture shows the same signals from the 23 feet whip antennna 

Frequency occupancy in the evening at about 10 MHz with a tuned 23 feet rod antenna 

 

 

Rohde & Schwarz EB 500 high performance SDR receiver to monitor the 

frequency occupancy set from 2 MHz to 22 MHz using an active antenna, at 3:41 

PM there were still huge signals present. The calibration accuracy is 0.1 dB 

 

 

 

Whip Antenna Simulations  

The majority of antennas are simulated with the NEC software but as we are less interested in 

radiation pattern but in matching and correct SWR and operating Q; a field simulator using tanh 

functions for resonant elements adds an additional level of accuracy to it. Multi element 

arrangement simulations are possible if the multiple coupled line element model is used. Up to 

8 parallel elements with arbitrary spacing and diameter are possible. It is based on the Spectral 

Domain Method with enhanced accuracy and speed. 

The microwave simulator, see below,  
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Using the Serenade Microwave /RF simulator to look at the resulting resonance as a function of the 

loading coil and the steel rod parts 
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40 m mobile rod antenna SWR 

 

 

 

40 m mobile antenna input impedance  
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Equivalent circuit parameters of the 20m mobile antenna 

 

 

VSWR simulation of the 20 m mobile antenna 
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Input impedance of the 20 m mobile antenna 

 

 

Equivalent modeling parameters for the 6 m mobile antenna  
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VSWR simulation of the 6 m antenna 
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